Abstract

To efficiently combat viral infectious diseases, it is important to develop broadly applicable countermeasures, and efficient antiviral systems can be developed by elaborating the relationship of antiviral efficiency with the interactions between antiviral agents and viruses. In the present study, conjugated polymer (CP)-based photodynamic therapy was used to inhibit RNA virus infections. A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudotyped virus composed of an SARS-CoV-2 envelope coated with the S protein and luciferase RNA genome was employed to assess antiviral efficiency. Three cationic CPs with different backbone structures, fluorene-co-phenylene (PFP), thiophene (PMNT), and phenylene vinylene (PPV), exhibit different photoinactivation effects. The highly efficient photoinactivation of PPV and PMNT is derived from the complete photodegradation of spike proteins, nucleocapsid proteins and nucleic acids of SARS-CoV-2 after binding to the viral spike proteins. Although PFP showed the highest efficiency in the photodegradation of spike proteins due to its strong binding affinity, ineffective viral inhibition was observed, which occurred because the viral gene was partially damaged under light irradiation and the process of delivering the viral gene to cells received assistance. This work preliminarily reveals the effect of CP-virus interactions on their photoinactivation activity and should be beneficial for further research on the development of highly efficient antiviral PDT agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.