Abstract
Blended poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT)/poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conjugated polymer nanoparticles were prepared and characterized by conventional and single-particle fluorescence spectroscopy. The particles exhibit red emission and improved quantum efficiency resulting from highly efficient energy transfer from donor PFBT to acceptor MEH-PPV as well as suppression of MEH-PPV aggregation. Photobleaching results indicate better photostability in the blended sample compared to undoped MEH-PPV nanoparticles and photoactivation of donor emission, which could be useful for single-molecule localization-based super-resolution microscopy. Single blended nanoparticles exhibit bright fluorescence as well as saturation behavior at very low excitation intensities. These and other properties of the blended conjugated polymer nanoparticles could provide substantial improvements in resolution when employed in super-resolution microscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.