Abstract
AbstractDNAzyme‐based fluorescent probes for imaging metal ions in living cells have received much attention recently. However, employing in situ metal ions imaging within subcellular organelles, such as nucleus, remains a significant challenge. We developed a three‐stranded DNAzyme probe (TSDP) that contained a 20‐base‐pair (20‐bp) recognition site of a CRISPR/Cas9, which blocks the DNAzyme activity. When Cas9, with its specialized nuclear localization function, forms an active complex with sgRNA within the cell nucleus, it cleaves the TSDP at the recognition site, resulting in the in situ formation of catalytic DNAzyme structure. With this design, the CRISPR/Cas9‐inducible imaging of nuclear Zn2+ is demonstrated in living cells. Moreover, the superiority of CRISPR‐DNAzyme for spatiotemporal control imaging was demonstrated by integrating it with photoactivation strategy and Boolean logic gate for dynamic monitoring nuclear Zn2+ in both HeLa cells and mice. Collectively, this conceptual design expands the DNAzyme toolbox for visualizing nuclear metal ions and thus provides new analytical methods for nuclear metal‐associated biology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.