Abstract
Thermal strain imaging (TSI) is a widely investigated ultrasound (US) thermometry technique that is based on the temperature-dependent change in speed of sound. However, a major challenge of TSI is a calibration process to account for material-dependent thermal strain. In this study, we leverage nanoparticle (NP)-mediated photoacoustic (PA) thermometry to calibrate thermal strain and guide US thermal imaging. By controlling the molecular composition of the sub-micrometer layer surrounding the NPs, PA thermometry becomes independent of the thermal characteristics of the overall background tissue where the NPs reside. Thus accurate temperature measurements are obtainable from sparse NP-mediated PA signals. These measurements are used to guide TSI, allowing US thermometry to produce an expanded temperature map over the entire region of interest without prior knowledge of tissue composition. Our feasibility study in tissue-mimicking phantoms demonstrates the potential to improve TSI by integrating a PA-based calibration method that complements and guides US thermometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.