Abstract

We image a rat cerebral cortex in situ by using a ring-based ultrasonic virtual point detector developed previously. Compared to the image generated by a finite-aperture detector, the image generated by the virtual point detector has a uniformly distributed resolution throughout the imaged area, owing to the lack of aperture effect of the ultrasonic detector. At the periphery of the image, the signal-to-noise ratio of the image obtained by the virtual point detector is also better than that of a finite-aperture detector. Furthermore, the virtual point detector can be scanned inside the brain to improve the local signal-to-noise ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.