Abstract

Spectral analysis of photoacoustic (PA) molecular imaging (PMI) of ferritin expressed in human melanoma cells (SK-24) was performed in vitro. Ferritin is a ubiquitously expressed protein which stores iron that can be detected by PA imaging, allowing ferritin to act as a reporter gene. To over-express ferritin, SK-24 cells were co-transfected with plasmid expressing Heavy chain ferritin (H-FT) and plasmid expressing enhanced green fluorescent protein (pEGFP-C1) using Lipofectamine TM 2000. Non-transfected SK-24 cells served as a negative control. Fluorescent imaging of EGFP confirmed transfection and transgene expression in co-transfected cells. To detect iron accumulation in SK-24 cells, a focused high frequency ultrasonic transducer (60 MHz, f/1.5), synchronized to a pulsed laser ( 2 ), was used to scan the PA signal from 680 nm to 950 nm (in 10 nm increments) from the surface of the 6-well culturing plate. PA signal intensity from H-FT transfected SK-24 cells was not different from that of non-transfected SK-24 cells at wavelengths less than 770 nm, but was over 4 dB higher than non-transfected SK-24 cells at 850 ~ 950 nm. Fluorescent microscopy indicates significant accumulation of ferritin in H-FT transfected SK-24 cells, with little ferritin expression in non-transfected SK-24 cells. The PA spectral analysis clearly differentiates transfected SK-24 cells from nontransfected SK-24 cells with significantly increased iron signal at 850 ~ 950 nm, and these increased signals were associated with transfection of H-FT plasmid. As such, the feasibility of ferritin as a reporter gene for PMI has been demonstrated in vitro. The use of ferritin as a reporter gene represents a new concept for PA imaging, and may provide various opportunities for molecular imaging and basic science research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call