Abstract

Photoacoustic microscopy, in which laser-light energy absorbed by coal macerals is converted into thermal energy, has recently emerged as an in-situ technique for coal maceral characterization. By employing two possible detection modes, different thermal properties can be measured and correlated with the material properties of the coal macerals. For the piezoelectric detection method, the photoacoustic signal is proportional to aB pc , where a is the coefficient of thermal expansion, B is the bulk modulus, p is the mass density, and c is the specific heat capacity of the maceral. The second method employs a gas microphone where the photoacoustic signal is proportional to l √Kpc , where K is the thermal conductivity. Photoacoustic data gathered by both methods on vitrinite and pseudovitrinite macerals from Appalachian basin coals agree with values predicted from known values of a, B, p and c. Data indicate that the thermal-elastic and thermal-conductance properties vary in a systematic manner from low- to high-rank coals. Throughout the entire rank range up to 92% carbon, vitrinite exhibits a significantly different photoacoustic response than pseudovitrinite. The photoacoustic measurements reflect the chemical composition and molecular structure of the individual coal macerals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.