Abstract
Measuring elasticity without physical contact is challenging, as current methods often require deconstruction of the test sample. This study addresses this challenge by proposing and testing a photoacoustic effect-based method for measuring the elasticity of polydimethylsiloxane (PDMS) at various mixing ratios, which may be applied on the wide range of applications such as biomedical and optical fields. A dual-light laser source of the photoacoustic (PA) system is designed, employing cross-correlation signal processing techniques. The platform systems and a mathematical model for performing PDMS elasticity measurements are constructed. During elasticity detection, photoacoustic signal features, influenced by hardness and shapes, are analyzed using cross-correlation calculations and phase difference detection. Results from phantom tests demonstrate the potential of predicting Young's modulus using the cross-correlation method, aligning with the American Society for Testing and Materials (ASTM) standard samples. However, accuracy may be affected by mixed materials and short tubes. Normalization or calibration of signals is suggested for aligning with Young's coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.