Abstract
The hypoimmunogenicity of tumors is one of the main bottlenecks of cancer immunotherapy. Enhancing tumor immunogenicity can improve the efficacy of tumor immunotherapy by increasing antigen exposure and presentation, and establishing an inflammatory microenvironment. Here, a multifunctional antigen trapping nanoparticle with indocyanine green (ICG), aluminum hydroxide (Al(OH)3) and oxaliplatin (OXA) (PPIAO) has been developed for tumor photoacoustic/ultrasound dual-modality imaging and therapy. The combination of photothermal/photodynamic therapy and chemotherapy induced tumor antigen exposure and release through immunogenic death of tumor cells. A timely capture and storage of antigens by aluminum hydroxide enabled dendritic cells to recognize and present those antigens spatiotemporally. In an ovarian tumor model, the photoacoustic-mediated PPIAO NPs combination therapy achieved a transition from “cold tumor” to “hot tumor” that promoted more CD8+ T lymphocytes activation in vivo and intratumoral infiltration, and successfully inhibited the growth of primary and metastatic tumors. An in situ tumor vaccine effect was produced from the treated tumor tissue, assisting mice against the recurrence of tumor cells. This study provided a simple and effective personalized tumor vaccine strategy for better treatment of metastatic and recurrent tumors. The developed multifunctional tumor antigen trapping nanoparticles may be a promising nanoplatform for integrating multimodal imaging monitoring, tumor treatment, and tumor vaccine immunotherapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.