Abstract

Photoacoustic frequency heat-transmission technique is used to study thermal and carrier transport properties in low-doped silicon wafers. Amplitude and phase photoacoustic signals as a function of modulation frequency of incident optical beam are measured using different experimental conditions. The thermal diffusivity, coefficient of excess carrier diffusion, carrier lifetime, and the surface recombination velocity were determined by comparing experimental results and calculated theoretical photoacoustic signals. The suitability of the photoacoustic frequency heat-transmission technique as a contactless diagnostic method is assessed in comparison with the more conventional photothermal deflection and photothermal modulated reflection techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.