Abstract

Watershed-based pollution is a common form of coral reef degradation. Affected reefs are often highly turbid, where light-limitation confines the distribution of photosynthetic benthic taxa and the capacity for photoacclimation is important for survival. We investigated low light photoacclimation in a Symbiodinium-hosting bioeroding sponge using in situ PAM fluorometry. Cliona aff. viridis was artificially shaded (70 & 95% ambient light reduction) on a low turbidity Indonesian reef for 25 days, with a subsequent 14-day recovery period. Significant changes in rETRmax, and qP, and a non-significant but observable decline in Ek, demonstrated that C. aff. viridis is able to photoacclimate to conditions of extreme light reduction and recover within a relatively short period of time. The sponge is therefore unlikely to be light limited on even the most turbid reefs. However, other aspects of watershed-pollution such as sedimentation may still limit their distribution in affected coastal waters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.