Abstract

Acclimation of the photosynthetic apparatus to changes in the light environment was studied in the unicellular red alga Porphyridium cruentum (American Type Culture Collection No. 50161). Absolute or relative amounts of four photosynthetic enzymes and electron carriers were measured, and the data were compared with earlier observations on light-harvesting components (F.X. Cunningham, Jr., R.J. Dennenberg, L. Mustárdy, P.A. Jursinic, E. Gantt [1989] Plant Physiol 91: 1179-1187; F.X. Cunningham, Jr., R.J. Dennenberg, P.A. Jursinic, E. Gantt [1990] Plant Physiol 93: 888-895) and with measurements of photosynthetic capacity. P(max), the light-saturated rate of photosynthesis on a chlorophyll (Chl) basis, increased more than 4-fold with increase in growth irradiance from 6 to 280 mueinsteins.m(-2).s(-1). Amounts of ferredoxin-NADP(+) reductase, ribulose-1,5-bisphosphate carboxylase, and cytochrome f increased in parallel with P(max), whereas numbers of the light-harvesting complexes (photosystem [PS] I, PSII, and phycobilisomes) changed little, and ATP synthase increased 7-fold relative to Chl. The calculated minimal turnover time for PSII under the highest irradiance, 5 ms, was thus about 4-fold faster than that calculated for cultures grown under the lowest irradiance (19 ms). A change in the spectral composition of the growth light (irradiance kept constant at 15 mueinsteins.m(-2).s(-1)) from green (absorbed predominantly by the phycobilisome antenna of PSII) to red (absorbed primarily by the Chl antenna of PSI) had little effect on the amounts of ribulose-1,5-bisphosphate carboxylase, ATP synthase, and phycobilisomes on a Chl, protein, or thylakoid area basis. However, the number of PSI centers declined by 40%, cytochrome f increased by 40%, and both PSII and ferredoxin-NADP(+) reductase increased approximately 3-fold on a thylakoid area basis. The substantial increase in ferredoxin-NADP(+) reductase under PSI light is inconsistent with a PSI-mediated reduction of NADP as the sole function of this enzyme. Our results demonstrate a high degree of plasticity in content and composition of thylakoid membranes of P. cruentum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.