Abstract

We report a theoretical-experimental investigation on the interaction of vacuum-ultraviolet radiation with formaldehyde (H2CO) in the gas phase. Experimentally, the absolute photoabsorption cross sections and the photoionization quantum yields were measured in the (11.0–21.5) eV range using the double-ion chamber technique. Also, the absolute photoionization and neutral-decay cross sections were derived from these data. In addition, in the same energy region, the dissociation pattern was obtained with a time-of-flight mass spectrometer using the photoelectron-photoion coincidence technique, and the absolute photoionization cross sections were derived for each ionic fragment observed. Moreover, theoretical photoionization cross sections were calculated for the ionization of the four outermost molecular valence orbitals (2b2, 1b1, 5a1, and 1b2) from the threshold to 35 eV. The calculations were performed using the iterative Schwinger variational method to solve the Lippmann-Schwinger equation in the exact static-exchange level of approximation. In general, there is a good agreement between our experimental and previous data reported in the literature. Our theoretical results show a fair qualitative agreement with the experimental data and with previous theoretical results. Above 20 eV, a better quantitative agreement with the experimental data is also observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.