Abstract

This paper aims to investigate the photo-thermally enhanced antimicrobial efficacy of triangular silver nanoplates for a broad range of harmful pathogens viz., Gram-negative bacteria (Escherichia coli), Gram-positive bacteria (Staphylococcus aureus), and fungus (Candida albicans). Triangular silver nanoplates were synthesized using the chemical method and were characterized for optical absorption, size and morphology, surface charge and concentration via UV-Vis spectroscopy, transmission electron microscopy, zeta potential analysis and inductively coupled plasma mass spectrometry, respectively. Furthermore, the photo-thermally enhanced antimicrobial efficacy of the triangular silver nanoplates (10μg/ml concentration) was evaluated on broadband near-infrared irradiation. The photothermal response shows that for the fixed concentration of silver nanoplates, the smaller-sized nanoplates (~52 nm) lead to higher temperature rise than larger-sized nanoplates (~68 nm). It is demonstrated that within a short exposure duration of 15 min, the photothermal activation of silver nanoplates led to ~5 log10 CFU/ml reduction for E. coli and C. albicans, and ~7 log10 CFU/ml reduction for S. aureus from a considerably high initial load of 5× 108 CFU/ml. The present study demonstrates that photo-thermally enhanced triangular silver nanoplates possess much stronger antimicrobial efficacy over a short exposure duration of few minutes and exhibits the applicability for a broad range of pathogens. The study is highly significant and explains the eradication of broad-spectrum of microbial pathogens by photo-thermally enhanced silver nanoplates in short exposure duration with low nanoparticle concentration, which is useful for diverse antibacterial and antifungal applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call