Abstract
Achieving the complete mineralization of persistent pollutants in wastewater is still a big challenge. Here, we propose an efficient photo-self-Fenton reaction for the degradation of different pollutants using the high-density (Ag: 22 wt %) of atomically dispersed AgCo dual sites embedded in graphic carbon nitride (AgCo-CN). Comprehensive experimental measurements and density functional theory (DFT) calculations demonstrate that the Ag and Co dual sites in AgCo-CN play a critical role in accelerating the photoinduced charge separation and forming the self-Fenton redox centers, respectively. The bimetallic AgCo-CN exhibited excellent photocatalytic performance toward the phenol even under extreme conditions due to an efficient degradation pathway and in situ generation of the hydrogen peroxide producing the main active oxygen species (⋅OH and 1 O2 ) and showed long-term activity in a self-design photo-Filter reactor for the purification of the phenol. Our discoveries pave the way for the design of efficient single-atoms photocatalysts-based photo-self-Fenton reaction for recalcitrant pollutant treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.