Abstract

Artificially created tactile feedback is in high demand due to fast developments in robotics, remote control in medicine, virtual reality, and smart electronics. Despite significant progress, high-quality haptic feedback devices remain challenging mainly due to the lack of stability and spatiotemporal resolution. In this work, we address these issues by the application of dynamic coatings, based on photo-responsive liquid crystal network (LCN) material. This material adapts upon an external stimulus (UV light with a power intensity of 50–90 mW/cm2) that changes its elastic properties (87% decrease of the modulus for 90 mW/cm2 power intensity of 365 nm UV light). Localized change of adaptive modulus with very high resolution (2 μm) was demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.