Abstract

The antifouling effects of a toothbrush-shaped photo-responsive polyzwitterionic membrane were studied via dissipative particle dynamics simulations in this work. The results reveal that the membrane modified by spiropyran methacrylate brushes displays photo-switchable and antifouling capability due to the photo-induced ring-opening reaction. Namely, surface morphology and hydrophilicity change in response to visible or UV light irradiation, which can be observed visually by protein adsorption and desorption. Further study indicates that: (1) brush-modification density can influence the structure and properties of the membrane. With low modification density, systems cannot establish an intact selective layer, which hinders the antifouling ability; as the modification density increases, the intact selective layer can be formed, which is conducive to the expression of photo-responsiveness and antifouling capability. (2) Factors of toothbrush-hair length and grafting ratio can influence the establishment of a light-responsive surface: as the grafting ratio and toothbrush-hair length increase, the light-responsive surface is gradually formed, meanwhile, the antifouling ability can be continuously reinforced under UV light irradiation. (3) As the brushes switch into a zwitterionic merocyanine state under UV exposure, the selective layer swelling becomes stronger than that with a hydrophobic spiropyran state under visible exposure. This is owing to the enhanced interaction between zwitterionic brushes and water, which is the root of the antifouling effect. The present work is expected to provide some guidelines for the design and development of novel antifouling membrane surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.