Abstract

PROTACs (Proteolysis targeting chimeras) are chimeric molecules designed to induce targeted protein degradation via the ubiquitin–proteasome system. These molecules catalytically degrade target proteins and sustainably inhibit their function. Therefore, PROTAC's unique mechanism of action is not only beneficial in medicine but also serves as a valuable tool for molecular biological analysis in fields like chemical biology, biochemistry, and drug discovery. This study presents a novel turn-off (ON-OFF) type PROTAC development strategy utilizing a photocleavable linker. The inclusion of this linker enables temporal control of the degradation activity targeting BRD4 protein upon UV light exposure. PROTAC-2 demonstrated the most potent degradation activity against BRD4 among the other synthesized PROTACs with varying linker lengths. The UV light-induced cleavage of PROTAC-2 was confirmed, leading to a reduction in its BRD4 degradation activity. Notably, this study introduces a novel linker capable of nullifying degradation activity of PROTACs which is activated by light irradiation. These findings offer a promising strategy for the development of turn-off type PROTACs, providing enhanced temporal control over protein degradation. The approach holds significant potential for applications in molecular function studies and drug discovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call