Abstract

Globally distributed and highly stable, perfluorooctanoic acid (PFOA) has prompted much concern regarding its accumulation in the natural environment and its threats to ecosystems. Therefore, it is desirable to develop an effective treatment against PFOA pollution. In this study, a photo-reduction method is developed and evaluated for the decomposition of perfluorooctanoic acid (PFOA) in aqueous phase with potassium iodide (KI) as a mediator. The experiment was conducted under 254 nm irradiation at room temperature and pH 9 under anaerobic conditions. Ultraviolet photolysis of iodide solutions led to the generation of hydrated electrons (e aq −, E aq/e°= −2.9 V), which contributed to the defluorination of PFOA. Defluorination was confirmed by fluoride release of 98%, indicating almost complete defluorination of PFOA. Kinetic analysis indicated that the PFOA decomposition fit the first-order model with a rate constant of 7.3 × 10 −3 min −1. Besides fluoride ions, additional intermediates identified and quantified include formic acid, acetic acid, and six short-chain perfluorocarboxylic acids (C1–C6). Furthermore, small amounts of CF 3H and C 2F 6 were also detected as reaction products by using GC/MS. With observation of the degradation products and verification via an isotopic labeling method, two major defluorination pathways of PFOA are proposed: direct cleavage of C–F bonds attacked by hydrated electrons as the nucleophile; and stepwise removal of CF 2 by UV irradiation and hydrolysis. This method was applied to the decomposition of PFOA in wastewater issued from a fluorochemical plant and proved to be effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.