Abstract

Photo-rechargeable energy storage devices are appealing for substantial research attention because of their possible applications in the Internet of Things (IoT) and low-powered miniaturized portable electronics. However, due to the incompatibility of the photovoltaics and energy storage systems (ESSs), the overall light-to-storage efficiency is limited under indoor light conditions. Herein, a porous carbon scaffold MnO-Mn3 O4 /C microsphere-based monolithic dye-sensitized photo-rechargeable asymmetric supercapacitor (DSPC) is fabricated. The integrated DSPC has a high areal specific capacitance of 281.9 mF cm-2 at the discharge rate of 0.01mA cm-2 . The light-to-electrical conversion efficiency of the DSSC is 27.6% under the 1000 lux compact fluorescent lamp (CFL). The DSPC shows an outstanding light-to-charge storage efficiency of 21.6%, which is higher than that reported ever. Furthermore, the fabricated polymer gel electrolyte-based quasi-solid state (QSS) DSPC shows similar overall conversion efficiency with superior cycling capability. This work shows a convenient fabrication process for a wireless power pack of interest with outstanding performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.