Abstract

In a specific range of electrical conductivity, poly(lactic acid)/PLA has the potential to be developed into environmentally friendly antistatic packaging after a modification process. PLA was blended in a mini single screw extruder at 180oC with different compositions of micro-graphite (0, 0.5, 1, and 1.5 %wt.). This report discusses the degradability of PLA composite, i.e., photo-oxidative degradation and hydrolytic degradation. The weight loss, thermal properties, and cross-section morphology of the tested specimens were monitored periodically. During the degradation test, micro-graphite could be released from the composite, leaving a rough surface and reducing the weight of the composite. Differential scanning calorimetry (DSC) test exhibited that the presence of micro-graphite did not influence the melting temperature of the composition studied. However, the onset temperature of the melting point showed a slight shift of about 2-4oC. Bulk crystallinity demonstrated a considerable dependence on the micro-graphite loading (0-1.5%wt). However, there were two contradictory phenomena after both degradation tests. UV exposure could stimulate the fragmentation of PLA chains, break the crystal structure and increase the embrittlement. Thus, crystallinity tended to decrease during photo-oxidative degradation. In hydrolytic degradation, degradation firstly occurred in the amorphous regions and was ongoing within the studied range of time (0-20 weeks). Thus, the bulk crystallinity of composite tended to increase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.