Abstract

In addition to electrically driven organic light-emitting diode (OLED)displays that rely on complicated and costly circuits for switching individual pixel illumination, developing a facile approach that structures pixel-free light-emitting displays with exceptional precision and spatial resolution via external photo-modulation holds significant importance for advancing consumer electronics. Here, optically switchable organic light-emitting pixel-free displays (OSPFDs) are presented and fabricated by judiciously combining an adaptive photosensitive ionic polymer as electron transport materials (ETM) with external photo-modulation as the switching mode while ensuring superior illumination performance and seamless imaging capability. By irradiating the solution-processed OSPFDs with light at specific wavelengths, efficient and reversible tuning of both electron transport and electroluminescence is achieved simultaneously. This remarkable control is achieved by altering the energetic matching within OSPFDs, which also exhibits a high level of universality and adjustable flexibility in the three primary color-based light-emitting displays. Moreover, the ease of creating and erasing desired pixel-free emitting patterns through a non-invasive photopatterning process within a single OSPFD is demonstrated, thereby rendering this approach promising for commercial displaying devices and highly precise pixelated illuminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.