Abstract
a b s t r a c t The influence of chromophore structure on the protonation constant of the Photoactive Yellow Protein chromophore is explored with isolated para-coumaric acid (pCA) and thiomethyl-para-coumaric acid model chromophores in solution. pH titration coupled with visible absorption spectra of the trans and photogenerated cis conformer of isolated pCA demonstrates that the isomerization of the chromophore increases the pKa of the phenolate group by 0.6 units (to 10.1 ± 0.22). Formation of the pCA thioester reduces the pKa of the phenolic group by 0.3 units (from 9.5 ± 0.15 to 9.2 ± 0.16). Unfortunately, a macro- scopic cis-TMpCA population was not achieved via photoexcitation. Both trends were explained with electronic structure calculations including a Natural Bond Orbital analysis that resolves that the pKa upshift for the cis configuration is attributed to increased Columbic repulsion between the coumaryl tail and the phenolate moieties. This structurally induced pKa upshift after isomerization is argued to aid in the protonation of the chromophore within the PYP protein environment and the subsequent propagation of the photocycle response and in vivo photo-activity. © 2013 Elsevier B.V. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Photochemistry and Photobiology A: Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.