Abstract
Reconfigurable optical devices provide new opportunities for integrated photonics. The use of chalcogenide glasses, with large refractive index nonlinearity and photosensitivity, in conjunction with the microresonator platform has proven to be a powerful tool in the study and application of nanophotonics. Here, we report cavity-enhanced photo-induced writing and erasing of gratings in a chalcogenide As 2 S 3 microresonator. Grating writing is implemented with self-enhanced standing wave modes, while the erasing of written gratings as well as removing of intrinsic back-scattering is achieved by Kerr-nonlinearity-induced symmetry breaking in the microresonator. These findings pave the way for future reconfigurable photonic devices and reveal exciting new possibilities for nonlinear photonics and microresonators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.