Abstract
Water purification and desalination to produce end-use water are important agendas in 21st century, because the global water shortage is becoming increasingly serious. Those processes using light energy, especially solar energy, without the consumption of fossil fuels are desired for creating sustainable society. For these earth-friendly water treatments, nanoporous materials and membranes are expected to provide new technologies. We have reported before that the repetitive photo isomerization of azobenzene groups between the trans and cis isomers induced by the simultaneous irradiation of UV and visible lights accelerates the molecular movement of nearby molecules in nanoporous materials. After further studies, we recently found that the permeation of water through azobenzene modified anodized alumina membranes as a photo responsive nanoporous membrane was achieved by the simultaneous irradiation of UV and visible lights, while no water penetration occurred under no light, only single UV or visible light. The photo induced permeation of water was promoted by the vaporization of water with the repetitive photo isomerization of azobenzene. This membrane permeation achieved the purification of water solutions, because dye molecules and a protein dissolved in aqueous solutions were not involved in the photo induced penetrated water. When 3.5% of sodium chloride solution as model seawater was employed for this membrane separation, the salt content of the permeated water was less than 0.01% to accomplish the complete desalination of seawater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.