Abstract

The photoproduction of NADPH in photosynthetic organisms requires the successive or concomitant interaction of at least three proteins: photosystem I (PSI), ferredoxin (Fd) and ferredoxin:NADP+ oxidoreductase (FNR). These proteins and their surrounding medium have been carefully analysed in the cyanobacterium Synechocystis sp. PCC 6803. A high value of 550mg/ml was determined for the overall solute content of the cell soluble compartment. PSI and Fd are present at similar concentrations, around 500μM, whereas the FNR associated to phycobilisome is about 4 fold less concentrated. Membrane densities of FNR and trimeric PSI have been estimated to 2000 and 2550 per μm2, respectively. An artificial confinement of Fd to PSI was designed using fused constructs between Fd and PsaE, a peripheral and stroma located PSI subunit. The best covalent system in terms of photocatalysed NADPH synthesis can be equivalent to the free system in a dilute medium. In a macrosolute crowded medium (375mg/ml), this optimized PSI/Fd covalent complex exhibited a huge superiority compared to the free system. This is a likely consequence of restrained diffusion constraints due to the vicinity of two out of the three protein partners. In vivo, Fd is the free partner, but the constant proximity between PSI and the phycobilisome associated FNR creates a similar situation, with two closely associated partners. This organization seems well adapted for an efficient in vivo production of the stable and fast diffusing NADPH.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.