Abstract

Small molecule organic solar cells (SMOSCs) are at the forefront of organic solar cell research and have power conversion efficiencies that match the leading polymer:fullerene organic solar cells (>10%). However, the operating physics of SMOSCs is less understood than that of their polymer:fullerene counterparts. A stronger emphasis on understanding the working mechanisms of SMOSCs is thus required. This feature article aims to highlight methods for understanding a significant loss process in SMOSCs ‐ charge carrier recombination ‐ by using photo‐induced transient optoelectronic techniques. These techniques make it is possible to probe the charge carrier density and lifetime in devices under working conditions. Employing these techniques alongside detailed morphological studies allows relationships between interfacial recombination processes, molecular packing and film nanomorphology to be obtained and can subsequently lead to more efficent devices being produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.