Abstract

Ab initio calculations of lattice constants, lattice stabilities of HgX (X = S, Se, Te) at different electronic temperatures (Te) have been performed within the density functional theory (DFT). We find that the lattice constants of HgX increase and the phonon frequencies reduce as Te increases. Especially the transverse-acoustic (TA) phonon frequencies of HgX gradually become negative with the elevation of the electron temperature. That is to say ultrafast intense laser induces lattice instabilities of HgX and athermal melting appears for the increase of laser intensity. What is more, with the X atom number increasing, the critical electronic temperatures of HgX are decreased in sequence. This result would be helpful for understanding the athermal melting processes for femtosecond laser micromachining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.