Abstract

In the present study, a two-step method was applied to synthesise Cu2+-modified TiO2 nanorod array thin films for photocatalytic processes. TiO2 nanorod array thin films were synthesised by a hydrothermal method and then modified with an ultrasonic-assisted sequential cation adsorption method. The samples were characterised by X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (DRS), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) analysis. The photoelectrochemical properties of the samples were evaluated by linear sweep voltammetry and Mott–Schottky analysis; photocatalytic activities were tested by methylene blue degradation under visible light. The photocurrent density of the TiO2/FTO sample modified with 50mM Cu2+ solution was 26 times higher than that of the unmodified TiO2/FTO sample. Additionally, methylene blue degradation efficiency under visible light was increased 40% with respect to the efficiency of the unmodified sample. The mechanism of the photocatalytic activity enhancement of Cu2+-modified TiO2 nanorod films was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.