Abstract

The dynamic and spatiotemporal control of integrin-mediated cell adhesion to RGD motifs in its extracellular matrix (ECM) is important for understating cell biology and biomedical applications because cell adhesion fundamentally regulates cellular behavior. Herein, the first photoswitchable synthetic ECM protein, Photo-ECM, based on the blue light switchable protein LOV2 is engineered. The Photo-ECM protein includes a RGD sequence, which is hidden in the folded LOV2 protein structure in the dark and is exposed under blue light so that integrins can bind and cells can adhere. The switchable presentation of the RGD motif allows to reversibly mediate and modulate integrin-based cell adhesions using noninvasive blue light. With this protein cell adhesions in live cells could be reversed and the dynamics at the cellular level is observed. Hence, the Photo-ECM opens a new possibility to investigate the spatiotemporal regulation of cell adhesions in cell biology and is the first step toward a genetically encoded and light-responsive ECM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call