Abstract

In this study, a new resin formulation method was developed to fabricate 3D printed conductive structures via digital light processing (DLP) 3D printing technology. Metal fillers, such as silver-coated copper flakes (AgCu) and silver nanoparticles (AgNP), were tested for conductive resin formulation. With low UV shielding and printing derivation, AgCu was selected as the conductive filler, and mixed with a photo curable acrylic resin. To resolve the sedimentation problem of metal fillers, carbon nanotubes (CNT) were added as a thickening agent to provide a supportive network to stop the metal fillers from settling. With the CNT addition, AgCu up to 70 wt% can be well dispersed in the acrylic resin with both fluidity and suspension stability. The resin can be printed into 3D metal circuitry structures with a conductivity up to 1000 S/cm without sintering. Multi-material stereolithography was also performed to produce conductive circuitry within insulation materials. The sectional view showed great connections between multiple layers of printed conductive tracks. Through-hole vias and blind vias were also built with great quality to demonstrate the capability of this conductive resin formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.