Abstract

Cataract is the leading cause of the blindness worldwide. Natural lens removal followed with intraocular lens (IOL) implantation is the main clinical treatment for cataract. However, the shape and the optical power of current IOLs were fixed, which were not favorable for patients, especially for children with congenital cataracts. An injectable IOL is an immerging replacement for a regular IOL due to the accommodation of external packing shapes. In this study, we developed a rapid, in situ gelation of an injectable photo-crosslinked hydrogel as an injectable IOL material. In this investigation, injectable hydrogel (G/D hydrogel) was fabricated from Gelatin methacrylate (GelMA) and N- (3, 4-dihydroxyphenylidene ethyl) methacrylamide (DMA) via photo-crosslinking for injectable IOL applications. Different preparation parameters such as the concentration, proportion, light intensity, and curing time were optimized based on the gelation time, swelling ratio, and mechanical properties of the produced G/D hydrogels. The results of in vitro cellular experiments showed that the G/D hydrogel had good and stable clearance of lens epithelial cells. The hydrogel was implanted into the eyes of the young rabbits for 1 month, and the results also showed that injectable G/D hydrogel can obtain good intraocular implants and have inhibitory effects on posterior capsular opacification. Thus such photo-crosslinked G/D hydrogel can serve as an injectable IOL application in cataract surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.