Abstract

Polymer electrolytes are considered potential key enablers for lithium-metal batteries due to their compatibility with the lithium-metal negative electrode. Herein, cross-linked self-standing single-ion conducting polymer electrolytes are obtained via a facile UV-initiated radical polymerization using pentaerythritol tetraacrylate as the cross-linker and lithium (3-methacryloyloxypropylsulfonyl)-(trifluoromethylsulfonyl)imide as the ionic functional group. Incorporating propylene carbonate as charge-transport supporting additive allowed for achieving single-ion conductivities of 0.21mScm-1 at 20°C and 0.40mScm-1 at 40°C, while maintaining a suitable electrochemical stability window for 4V-class positive electrodes (cathodes). As a result, this single-ion polymer electrolyte featured good cycling stability and rate capability in Li||LiFePO4 and Li||LiNi0.6 Mn0.2 Co0.2 O2 cells. These results render this polymer electrolyte as potential alternative to liquid electrolytes for high-energy lithium-metal batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call