Abstract

Integrating a photoelectrode into a zinc-air battery is a promising approach to reducing the overpotential required for charging a metal-air battery by using solar energy. In this work, a photo-fuel cell employing a Nb2O5/CdS photoanode and a Zn foil as a counter-electrode worked as a photoelectrochemical battery that saves up to 1.4 V for battery charging. This is the first time a Nb2O5-based photoelectrode is reported as a photoanode in a metal-air battery, and the achieved gain is one of the top results reported so far. Furthermore, the cell consumed an organic fuel, supporting the idea of using biomass wastes as a power source for sunlight-assisted charging of metal-air batteries. Thus, this device provides additional environmental benefits and contributes to technologies integrating solar energy conversion and storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.