Abstract

The high rate of electron/hole pair recombination reduces the quantum yield of the processes with TiO2 and represents its major drawback. Adding a co-adsorbent increases the photocatalytic efficiency of TiO2. In order to hybridize the photocatalytic activity of TiO2 with the adsorptivity of carbon nanotube, a composite of multi-walled carbon nanotubes and titanium dioxide (MWCNT/TiO2) has been synthesized. The composite was characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared absorption spectroscopy (FTIR), and diffuse reflectance UV–vis spectroscopy. The catalytic activity of this composite material was investigated by application of the composite for the degradation of methyl orange. It was observed that the composite exhibits enhanced photocatalytic activity compared with TiO2. The enhancement in photocatalytic performance of the MWCNT/TiO2 composite is explained in terms of recombination of photogenerated electron–hole pairs. In addition, MWCNT acts as a dispersing agent preventing TiO2 from agglomerating activity during the catalytic process, providing a high catalytically active surface area. This work adds to the global discussion of how CNTs can enhance the efficiency of catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.