Abstract

An important part of a photo-bioelectrochemical cell (PBEC) is the photo-biocatalyst substrate taken as anode. This study aims to explain the effect of CNT/TiO2/chlorophyll photocatalyst coated on the cellulose nanopaper (CNP) substrate on the PBEC performance and to compare the results with those obtained for the commercial indium tin oxide (ITO) glass and flexible ITO as substrates. The results showed high sheet resistance of CNP, which is 61182 Ω sq-1, which is reduced by 80 % in the presence of CNT/TiO2/Chl biocatalyst. The highest output voltage of 0.95 to 1 V was produced by coating CNT/TiO2/Chl on the flexible ITO. The maximum current density (Jmax) of 3726 mA m-2 and the highest maximum power density value of around 574 mW m-2 were obtained for illuminated CNT/TiO2/Chl on the rigid ITO anode. In dark conditions, the highest power density was observed for CNP as the supporting substrate. The photo-bioelectrochemical cell adopting CNT/TiO2/Chl and CNP as the supporting substrate material has great potential for a variety of applications, such as wearable electronics, environmental monitoring, remote or off-grid energy supply, and renewable energy systems, thereby contributing to the advancement of sustainable energy technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call