Abstract

Photo-atomic layer etching (photo-ALE) of GaAs and AlGaAs semiconductors was investigated in deionized H2O and aqueous solution of NH4OH under weak excitation conditions ( P ≈ 20 mW/cm2). The process is based on digital photocorrosion in a processed solution and a negligible corrosion during the light-off phase employed for dissolution of the photocorrosion products. An inductively coupled plasma mass spectroscopy (ICP-MS) analysis revealed that photo-ALE of GaAs in an aqueous solution of NH4OH proceeds linearly with the number of reaction cycles, typically at ∼0.1 nm/cycle, and with the light-off phase as short as 22 s sufficient to entirely dissolve the photocorrosion products generated during a 3 s irradiation. In agreement with the ICP-MS data, the constant photo-ALE rates in NH4OH were also demonstrated in situ with the photoluminescence measurements. Our results suggest that the congruent decomposition of III-V materials and the etching of deep structures with atomic layer resolution could be facilitated by switching in situ between different etching environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.