Abstract

We reported on the recombination processes determined by the release of electrons from defects connected with the dosimetric 430 K thermostimulated luminescence (TSL) peak as well as with the 260 K TSL peak. These TSL peaks appear in thermochemically reduced α-Al 2O 3 crystals containing hydrogen and emission of these TSL peaks corresponds to luminescence of the F-center. The X-ray exposure or UV excitation in the absorption band of F-centers at 6.0 eV of reduced α-Al 2O 3 crystals doped with acceptor impurities results in the appearance of a broad anisotropic complex absorption band in the spectral region 2.5–3.5 eV and in the appearance of a predominant TSL peak at 430 K. Above 430 K the above-mentioned broad absorption band disappears. Optical bleaching of the 2.5–3.5 eV band is accompanied by the disappearance of the 430 K TSL peak and results in F-center emission. The X-ray or UV excitation of reduced α-Al 2O 3 crystals with donor-type impurities results in the appearance of an anisotropic absorption band at 4.2 eV and the appearance of a dominant TSL peak at 260 K. Above 260 K the 4.2 eV absorption disappears and photostimulated luminescence (PSL) of the F-center recombination luminescence in the 4.2 eV region is no longer observed. Optical bleaching of the 4.2 eV absorption band is accompanied by the disappearance of the 260 K TSL peak. The successful use of reduced α-Al 2O 3 in dosimetry needs the optimization of the concentration of all components (acceptors, hydrogen, intrinsic defects) involved in the thermo- and photostimulated processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.