Abstract

Background: Ultraviolet (UV) and non-thermal plasma functionalization are surface treatment modalities that seem able to improve osseointegration. The aim of this systematic review and meta-analysis is to assess the effect of the two methods and possible differences. Materials and Methods: The systematic research of pre-clinical animal studies was conducted up to May 2020 in the databases PubMed/Medline, Scopus and the Cochrane Lybrary. A meta-analysis was performed by using the DerSimonian–Laird estimator in random-effects models. Results: Through the digital search, 518 articles were identified; after duplicate removal and screening process 10 papers were included. Four studies evaluating UV treatment in rabbits were included in the meta-analysis. The qualitative evaluation of the included studies showed that both UV photofunctionalization and non-thermal plasma argon functionalization of titanium implant surfaces might be effective in vivo to improve the osseointegration. The meta-analysis on four studies evaluating UV treatment in rabbits showed that bone to implant contact values (expressed as standardized mean differences and raw mean differences) were significantly increased in the bio-activated groups when follow-up times were relatively homogeneous, although a high heterogeneity (I2 > 75%) was found in all models. Conclusions: The present systematic review and meta-analysis on pre-clinical studies demonstrated that chair-side treatment of implants with UV or non-thermal plasma appear to be effective for improving osseointegration. This systematic review supports further clinical trials on this topic.

Highlights

  • Prosthetic rehabilitation with dental implants represents a successful therapy for the replacement of severely compromised or missing teeth, with long-term success rates above 95% [1]

  • The qualitative evaluation of the included studies showed that both UV photofunctionalization and non-thermal plasma argon functionalization of titanium implant surfaces might be effective in vivo to improve the osseointegration

  • In order to improve the biological response to Ti implants, various techniques have been suggested in order to modify Ti surface roughness, chemistry, topography, and electrical charge, focusing on the biological performance of Ti surfaces [5,6,7] Higher bone–implant contact (BIC) values, better bone apposition and peri-implant bone maintenance over time were demonstrated on implants with rougher surfaces compared to machined surfaces, including stimulation of cell migration and proliferation [6,7,8]

Read more

Summary

Introduction

Prosthetic rehabilitation with dental implants represents a successful therapy for the replacement of severely compromised or missing teeth, with long-term success rates above 95% [1]. Ultraviolet (UV) and non-thermal plasma functionalization are surface treatment modalities that seem able to improve osseointegration. Four studies evaluating UV treatment in rabbits were included in the meta-analysis. The qualitative evaluation of the included studies showed that both UV photofunctionalization and non-thermal plasma argon functionalization of titanium implant surfaces might be effective in vivo to improve the osseointegration. The meta-analysis on four studies evaluating UV treatment in rabbits showed that bone to implant contact values (expressed as standardized mean differences and raw mean differences) were significantly increased in the bio-activated groups when follow-up times were relatively homogeneous, a high heterogeneity (I2 > 75%) was found in all models. Conclusions: The present systematic review and meta-analysis on pre-clinical studies demonstrated that chair-side treatment of implants with UV or non-thermal plasma appear to be effective for improving osseointegration. This systematic review supports further clinical trials on this topic

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.