Abstract

Post-anthesis leaf senescence is a key developmental process in the life of plants as it is the time during which material built up by the plant during its growth phase is mobilized into reproductive tissues. Here we aimed to study the extent of photo- and antioxidant protection and salicylic acid (SA) accumulation during post-anthesis leaf senescence in a perennial plant, Salvia lanigera Poir. grown under Mediterranean field conditions. SA levels increased sharply (up to 2.7-fold) during early stages of leaf senescence until fruit and seed formation occurred (i.e. 4 weeks after anthesis). Later on, SA levels kept at constant high levels until leaf abscission occurred (i.e. 7 weeks after anthesis). Reductions in chlorophyll and carotenoid (lutein, violaxanthin and beta-carotene) levels occurred progressively during leaf senescence. In contrast, xanthophyll cycle de-epoxidation increased during early stages of leaf senescence and remained constant later, similar to SA accumulation. Indeed, xanthophyll cycle de-epoxidation strongly positively correlated with SA levels (r(2) = 0.92). The maximum efficiency of PSII (F(v)/F(m) ratio) kept around 0.80 throughout the experiment, except during the latest stage of leaf senescence (i.e. after fruit and seed formation), when this ratio decreased to 0.72, thus indicating damage to PSII. It is concluded that endogenous SA levels increase sharply during early stages of post-anthesis leaf senescence and concomitantly with activation of photoprotection mechanisms, such as xanthophyll cycle-dependent excess energy dissipation, thus avoiding damage to PSII until fruit and seed formation have been accomplished.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call