Abstract

One of the limiting steps in the regulation of nitric oxide (NO) synthesis is the availability of its precursor, L-arginine, which depends on the presence of a specific uptake system. A characterization of the L-arginine uptake mechanism in the golden hamster retina was performed. This mechanism was stereospecific, saturable, and monophasic, with an apparent of 56.1 +/- 2.0 microM and a maximum velocity of 36.0 +/- 2.8 pmol/mg prot/min. The basic amino acids L-lysine and L-ornithine but not D-arginine or the nitric oxide synthase inhibitors, N(omega)-nitro-L-arginine methyl ester and N(omega)-nitro-L-arginine impaired L-arginine influx. Preincubation with L-lysine for 1 h prior to the transport assay significantly stimulated L-arginine uptake. Saturation studies of L-arginine uptake performed at 12.00 and 24.00 h indicated a higher value of Vmax at midnight than at midday. When the hamsters were placed under constant darkness or constant light for 48 h and killed at equivalent time points, representing subjective day and subjective night, the differences in L-arginine influx disappeared. Semiquantitative RT-PCR analysis showed that the levels of mRNAs for both CAT-1 and CAT-2B were significantly higher at midnight than at midday. L-Arginine significantly increased cGMP accumulation in a time-dependent manner, with maximal effects during the night. Based on these results, it might be presumed that hamster retinal L-arginine uptake is regulated by the photic stimulus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.