Abstract

The photic entrainment system is critical for the internal circadian clock to be synchronized by external time cues. In nocturnal rodents, exposure to light during the early subjective night causes a phase delay, whereas it causes a phase advance during the late subjective night. This is represented by a phase-response curve (PRC). The PRC of females has not been well studied due to their estrous cycles. Our aim in this study was to understand the characteristics of photic entrainment in female cycling rodents and identify differences in photic entrainment among the stages of the estrous cycle. To establish two types of PRC, immediate PRC (iPRC) and steady state PRC (ssPRC), in each stage of the estrous cycle, we recorded circadian rhythms of wheel running activity, applying a 15-min light pulse to cycling female mice in constant darkness. In the iPRC, which was evaluated on the next day of the light pulse, the amount of phase shift in the diestrus was larger than that in the metestrus stage at circadian time (CT) 2. Similarly, the amount of phase shift in metestrus was larger than that in proestrus at CT 10. In the ssPRC, which was evaluated after completion of a new steady state, no significant estrous variations in the amount of photic phase shifts were detected for any CTs. Although these results indicate that the intrinsic photic entrainment system is not influenced by the estrous cycle, it may affect photoreception and cause sudden behavioral changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.