Abstract
The Drosophila melanogaster larval photosensory organ that mediates the response to light consists of bilaterally symmetrical clusters of 12 photoreceptors. These are distinguished on the basis of expression of the rhodopsins Rh5 and Rh6. The Rh6-expressing cells correspond to the Hofbauer-Buchner (H-B) eyelet found later in the posterior margin of the adult compound eye and recently shown to function as an input pathway in the entrainment of circadian rhythmicity in adult Drosophila. In addition, the axons of the larval photoreceptors are found in intimate association with a subset of the main circadian pacemaker neurons located in the developing accessory medulla, the small ventral lateral neurons (LNv). The observed spatial overlap between components of the circadian circuitry, input pathway, and pacemaker neurons-and the larval visual organ-suggest a functional relationship between these two photosensory input pathways. In this study we determined the requirement of specific rhodopsin-expressing photoreceptors including the presumptive H-B eyelet and pacemaker neurons in the larval locomotory response to visual stimuli. Our results demonstrate that two of the most important components of the neuronal circuitry underlying circadian rhythmicity in Drosophila, namely, the extraretinal H-B cluster and the circadian pacemakers, while in intimate association with the larval visual system are not required for the larval motor response to light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.