Abstract

The neurotransmitter serotonin plays an important role in the regulation of the circadian clock. To gain further insight into the mechanisms by which serotonin regulates rhythmicity, the authors investigated photic and nonphotic effects on the circadian clock in Pet-1 knockout mice. In these mice, the serotonergic system suffers a developmental loss of 70% of serotonin neurons, with the remaining neurons being deficient in serotonergic function as well. Pet-1 knockout mice show significantly decreased phase delays of the circadian clock in response to light pulses in the early night; however, this difference was not reflected in a difference in the expression of Fos protein in the suprachiasmatic nucleus. There were no genotypic differences detected in the phase-shifting response to injection of the 5-HT1A/7 (serotonin 1A and 7) agonist 8-OH-DPAT ((±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide); however, there were small but significant differences in the phase-shifting responses to cages between genotypes and sexes. Several different patterns of wheel-running activity were observed in knockout mice that differed from those in wild-type mice, suggesting that normal serotonergic function is necessary for the proper consolidation of nocturnal activity. Overall, these data are consistent with other pharmacological and genetic studies demonstrating a significant role for serotonin in circadian clock function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call