Abstract

We report a femtosecond pump-probe study on the photochemistry of concentrated aqueous solutions of [RuII(bpy)3]2+, as a function of pump power (up to 2 TW/cm2) at 400 nm excitation. The transient absorption spectra in the 345-660 nm range up to 1 ns time delay enable the observation of the following photoproducts: the triplet 3MLCT (metal-to-ligand-charge-transfer) excited state, the reduced form [RuII(bpy)3]+, the oxidized species [RuIII(bpy)3]3+, and the solvated electron e(aq). The 3MLCT state is formed within the excitation pulse and undergoes vibrational relaxation in 3-5 ps, as evidenced by the shift of the ligand-centered (LC) absorption band below 400 nm. Even at the highest pump powers, the majority of e(aq) originates from multiphoton ionization of [RuII(bpy)3]2+ and not from the solvent, generating [RuIII(bpy)3]3+ as a byproduct. At 10 ps time delay, the total concentration of the three product species is balanced by the depleted concentration of [RuII(bpy)3]2+, even at the highest fluences used, indicating that no further reaction products significantly contribute to the overall photochemistry. On the 100 ps time scale, most probably diffusion-controlled reduction of ground-state [RuII(bpy)3]2+ by solvated electrons occurs, next to recombination between e(aq) and [RuIII(bpy)3]3+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.