Abstract

Previous work on the desensitization of G protein-coupled receptors has focused on the role of arrestin binding following receptor phosphorylation. We have examined the hypothesis that phosphorylation alone contributes to desensitization. In this study we demonstrate that for the G(q)-coupled gastrin-releasing peptide receptor (GRP-R), phosphorylation by GRK2 to a stoichiometry of approximately 1 mol PO(4)/mol GRP-R is sufficient in the absence of arrestin to reduce the rate of receptor catalyzed G protein activation by approximately 80%. Furthermore, GRP-Rs exposed in vivo to agonist are rapidly phosphorylated to a similar stoichiometry and are desensitized to a similar degree. Finally, the molecular mechanism for both in vitro GRK2-induced and in vivo agonist-induced desensitization is primarily a decrease in the maximum velocity (V(max)) for the catalysis of guanine nucleotide exchange by the GRP-R rather than a change in the affinity of the receptor for the alpha(q) or betagamma subunits. Based on these results, we suggest that, for some G protein-coupled receptors, phosphorylation has a role in desensitization that is independent of arrestin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.