Abstract

Listeria monocytogenes is a bacterial pathogen that grows within the cytosol of infected host cells. Entry into the cytosol is largely mediated by a secreted bacterial cytolysin, listeriolysin O (LLO). In order to prevent host cell damage, the pore-forming activity of LLO is restricted to the phagosome. Compartmentalization of LLO requires a PEST-like sequence; PEST sequences can direct eukaryotic proteins for proteasomal degradation. Here we test the hypothesis that LLO's PEST-like sequence compartmentalizes pore-forming activity by targeting this bacterial protein for degradation in the host cytosol. We show that intracellular LLO was degraded in a proteasome-dependent manner, and that, prior to degradation, LLO was ubiquitinated and was phosphorylated within the PEST-like sequence. However, wild-type LLO and PEST region mutants had similarly short intracellular half-lives and both the wild-type and mutant proteins were stabilized by inhibitors of host proteasomes. Additionally, blocking host proteasomes did not cause toxicity in a wild-type infection, but enhanced the cytotoxicity of PEST region mutants. Together with the observation that PEST region mutants exhibit higher intracellular LLO levels than wild-type bacteria, these data suggest that LLO's PEST-like region does not mediate proteasomal degradation by the host, but controls LLO production in the cytosol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.