Abstract

The regulation of cytochromes P450 (CYPs) by induction mediated by xenobiotics is well known. Our team has discovered an additional important regulation of xenobiotic-metabolizing CYPs by phosphorylation. Individual CYPs are phosphorylated by different protein kinases, leading to CYP isoenzyme-selective changes in the metabolism of individual substrates and consequent profound changes in the control of mutagenic and cytotoxic metabolites. Some CYPs are phosphorylated by protein kinase C and some by the cyclic adenosine monophosphate (cAMP) dependent protein kinase A. We found that cAMP not only leads to drastic changes in the activity of individual CYPs, but also drastic changes in the nuclear localization of the CYP-related transcription factor Ah receptor (AHR). The consequences are very different from those of AHR nuclear translocation mediated by its classic ligands (such as dioxin and many polycyclic aromatic hydrocarbons) and may represent the long-sought physiological function of the AHR. The disturbance of this physiological function of AHR by extremely persistent high-affinity xenobiotic ligands such as dioxin may represent the most important contributing factor for their potent toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.