Abstract

There is evidence that endothelial nitric-oxide synthase (eNOS) is regulated by reciprocal dephosphorylation of Thr497 and phosphorylation of Ser1179. To examine the interrelationship between these sites, cells were transfected with wild-type (WT), T497A, T497D, S1179D, and T497A/S1179D eNOS and activity, NO release and eNOS localization were assessed. Although eNOS T497A, S1179D and T497A/S1179D eNOS had greater enzymatic activity than did WT eNOS in lysates, basal production of NO from cells was markedly reduced in cells transfected with T497A and T497A/S1179D eNOS but augmented in cells transfected with S1179D eNOS. Stimulating cells with ATP or ionophore normalized the loss of function seen with T497A and T497A/S1179D eNOS to levels observed with WT and S1179D eNOS, respectively. Despite these functional differences, the localization of eNOS mutants were similar to WT. Because both T497A and T497A/S1179D eNOS exhibited higher enzyme activity but reduced production of NO, we examined whether these mutations were "uncoupling" NO synthesis. T497A and T497A/S1179D eNOS generated 2-3 times more superoxide anion than WT eNOS, and both basal and stimulated interactions of T497A/S1179D eNOS with hsp90 were reduced in co-immunoprecipitation experiments. Thus, the phosphorylation/dephosphorylation of Thr497 may be an intrinsic switch mechanism that determines whether eNOS generates NO versus superoxide in cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.