Abstract

The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) ordinarily exists in electrophoretically distinct hypophosphorylated and hyperphosphorylated forms. Human cytomegalovirus infection induced forms of this subunit whose electrophoretic mobilities were intermediate without decreases in abundance of the original forms. Phosphatase treatment nearly eliminated the intermediate migrating forms. In vitro, the viral protein kinase, UL97, phosphorylated this subunit, a recombinant protein containing the CTD, and peptides containing the CTD consensus sequence, YSPTSPS. Phosphorylation occurred predominantly on serine 5 and was substantially reduced when either serine 2 or 5 was already phosphorylated. The abundance of the intermediate and hypophosphorylated forms was reduced at most twofold during infections in which UL97 was genetically or pharmacologically inhibited. These results identify a new pattern of RNA polymerase II modification induced by virus infection and a viral enzyme that phosphorylates the CTD in vitro, but only possibly in vivo.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.